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Introduction

Motives are thought of as a “universal cohomology theory” for
schemes.

The idea is that any reasonable cohomology functor from schemes
to some linear category V factors via the category of motives:

Schemes −→ Motives −→ V

Can make this precise in many ways, but categories of motives are
difficult to understand!

Idea: Decategorify!



Introduction

Example: Consider a finite group G , and the category RepC(G ).

Can take the Grothendieck ring K0(RepC(G )).

It is a commutative ring, generated by the irreducible
representations.

Addition ↔ direct sum of representations

Multiplication ↔ tensor product of representations.

Exterior powers give extra algebraic structure, giving us a
lambda-ring, with lambda-operations, Adams operations, and
more.



Introduction

Representation rings are sometimes described only as commutative
rings.

Example: The Grothendieck ring of RepC(S3) is isomorphic to
Z[X ,Y ]/(XY − Y ,X 2 − 1,Y 2 − X − Y − 1)

(Here 1 is the trivial rep, X is the sign rep (dim 1), and Y is the
2-dimensional irrep.)

But this is bad - the lambda-ring structure is important!



Introduction

Example: Consider (complex) representations of a compact
connected complex Lie group.

The Grothendieck ring is generated as a ring by elements in
one-to-one correspondence with the nodes of the associated
Dynkin diagram.

The Grothendieck ring is generated as a lambda-ring by elements in
one-to-one correspondence with the arms of the Dynkin diagram.

There are also structure theorems characterizing which
lambda-rings can occur as representation rings of these Lie groups,
as well as a theorem saying that the Lie group itself is determined
by the Grothendieck ring together with one extra piece of data.



Introduction

General categorical framework for categories like RepC(G ):
Tannakian categories.

For any such category T , the Grothendieck ring K0(T ) is a
lambda-ring.

Main question: Can we give explicit descriptions of these
lambda-rings in a way that clearly captures also the lambda-ring
structure?



Didactical problem

Question: How teach algebraic structures (to high-school
students)?

Finite groups: Use permutation representations

Commutative rings: Use polynomials

Associative algebras: Use matrices

Lie algebras: Use matrices

Lambda-rings: Use ???



Didactical problem

Question: How teach algebraic structures (to high-school
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Lambda-rings: Use Tannakian symbols



Lambda-rings

Let R be a torsion-free commutative ring. A lambda-structure on
R is an infinite sequence of ring homomorphisms ψ1, ψ2, . . . from
R to R satisfying the following axioms:

1. ψ1(x) = x for all x ∈ R.

2. ψm(ψn(x)) = ψmn(x) for all m, n and all x ∈ R.

3. ψp(x) ≡ xp (mod pR) for all prime numbers p and all x ∈ R.



Tannakian symbols

Let M be a commutative monoid (set with a binary operation that
is associative, commutative, and has an identity element).

Example: M = C∗ (under multiplication).

A finite multiset is a finite unordered list of elements (repeated
elements allowed).

A Tannakian symbol (with values in M) is an ordered pair of finite
multisets with elements taken from M. We require the multisets to
be disjoint.

Notation: A
B

Example: {2,2,5,5}{1,1,1}



Tannakian symbols

Operations on Tannakian symbols (examples):

{5}
{1,−1}

⊕ {1, 1, 1}
{−1}

=
{5, �1, 1, 1}
{�1,−1,−1}

=
{5, 1, 1}
{−1,−1}

{5}
{1,−1}

⊗ {10}
{3, 7}

=
{50, 3, 7,−3,−7}
{15, 35, 10,−10}

ψ2
({−1,−1, 2, 5}
{1,−2, 7}

)
=
{���

(−1)2 , (−1)2,��22 , 52}
{��12 ,���

(−2)2 , 72}
=
{1, 25}
{49}



Tannakian symbols

We write TS(M) for the set of Tannakian symbols with values in
M.

Theorem: TS(M), with the above operations, is a lambda-ring.

As a commutative ring, it is isomorphic to the monoid algebra of
M.

TS is a functor from commutative monoids to lambda-rings.

Let U be a set. We write TS(M)U for the set of functions from U
to TS(M) (think of this as vectors of symbols, indexed by U).



Tannakian symbols

Main conjecture:

Let T be a Tannakian category, with Grothendieck ring K0(T ).
Let L be any sub-lambda-ring or quotient lambda-ring of K0(T ).

I There exists a monoid M, a set U, and an injective
lambda-ring homomorphism

L ↪→ TS(M)U

.

I If L is finitely generated, then U may be taken to be finite.

I There exists a practical algorithm associated to L that takes
an element of TS(M)U as input and determines whether it
comes from L.



Tannakian symbols

The most interesting aspect here is not to prove the conjecture,
but to work out concrete examples.

Many relations to classical problems of number theory, algebraic
geometry and representation theory.



Motives

Want to talk about motives over Spec(Z) (this is the most
interesting and most complicated case of motives, but there are
many others).

Let X be a scheme of finite type over Spec(Z). In practice, this
means we consider a set polynomial equations with integer
coefficients.

To the scheme X we can associate a motive h(X ), and more
refined ”weight pieces” hi (X )(m). Here i and m are two integers.



Motives

Each motive hi (X )(m) splits into a direct sum of irreducibles.
These summands (as we vary X , i and m) generate a lambda-ring,
which is the Grothendieck ring of motives (over Spec(Z)).

We can construct a map from this lambda-ring to TS(M)U , where
M = C∗, and U is the set of prime numbers.

The data we use is the same data found in the Hasse-Weil zeta
function of X , but organised into ”combinatorial” objects rather
than a complex-analytic function.



Examples

Example: The scheme X defined by the equation y2 + y = x3 − x2

(an elliptic curve).

At the prime p = 2, the symbol becomes:

{−1 + i ,−1− i}
{1, 2}

The absolute values of these numbers are
√

2 and
√

2 upstairs, and
1 and 2 respectively downstairs. From this we know the dimension
and the Betti numbers of the scheme.



Examples

Let Xκ be the ”quartic Dwork family”, i.e. the (projective) scheme
defined by the equation

x4 + y4 + z4 + w4 = 4κxyzw

where κ is a integer-valued parameter.

The scheme Xκ comes with a natural action of the group
Z/4× Z/4. Taking the quotient scheme by this group action and
resolving singularities yields a new scheme Yκ, called the mirror of
Xκ.

Computations borrowed from a presentation by Ursula Whitcher,
using code by Edgar Costa.



Examples

Look at p = 41. For κ = 2, the scheme Xκ has symbol:

{1, 41, 41, 41, 41,−41,

−41, . . . ,−41,
25− 8

√
66i

2
,

25 + 8
√

66i

2
, 1681}/∅

Here there are 4 copies of the number 41 and 16 copies of the
number -41.

For the mirror variety Y2, we get

{1, 41, 41, . . . , 41,−41,
25− 8

√
66i

2
,

25 + 8
√

66i

2
, 1681}/∅

with 19 copies of the number 41, a single copy of the number -41.



Examples

Still working with p = 41, for the case κ = 3 we get for X3:

{1, 41, 41, . . . , 41,−39 + 4
√

10i ,−39− 4
√

10i , 1681}/∅

with 20 copies of the number 41.

And this time, the Tannakian symbol for the mirror variety Y3 is

{1, 41, 41, . . . , 41,−39 + 4
√

10i ,−39− 4
√

10i , 1681}/∅

with 20 copies of 41.

Completely identical symbols!



Examples

Question: Is there an explicit algebraic operator on K0(Mot) that
sends the class of a variety to the class of its mirror?

There are literally hundreds of questions like this about explicit
constructions in Grothendieck rings, which we can investigate using
Tannakian symbols.

Can use these symbols in any situation in which we have rational
zeta functions, or zeta functions with Euler products, or a
Tannakian category, or a category with a symmetric monoidal
functor to a Tannakian category.

Wonderful didactical tool!



Examples

One final example: For any element of K0(Mot), and any integer
n, there should be a ”special value formula”.

The simplest case is Euler’s Basel problem. Take the scheme x = 0
and the integer n = 2. We get

1

1
+

1

4
+

1

9
+

1

16
+ · · · =

π2

6



Examples

Two final remarks on work in progress:

1. New lambda-ring structures on multiplicative functions in
elementary number theory. Clarifies a multitude of strange
identities, some going back to Ramanujan.

2. First major application of infinity-categories to number theory:
Proof of the Tamagawa number conjecture by Gaitsgory and Lurie.

One ingredient: Zeta functions of stacks (not rational!). For these
we can make computations using generalised Tannakian symbols.



Thank you!
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