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Abstract. We present a framework for encoding information about ob-
jects from higher arithmetic geometry. This framework is built around a
new kind of data type called a Tannakian symbol. The arithmetic objects
we have in mind include modular forms (and more general automorphic
representations), elliptic curves (and more general schemes, motives and
algebraic stacks), finite graphs, group representations, and multiplicative
functions (like the Euler totient function). The language of Tannakian
symbols not only allows for representations of individual objects, but also
representations of classes of objects, relations between objects, and vari-
ous important unary and binary operations on objects. The development
of this framework is the first small step in a long-term project aiming to
apply machine-learning algorithms to some problems of current interest
in modern arithmetic geometry.
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1 Introduction

Arithmetic geometry is one of the most vibrant and abstract areas of modern
pure mathematics. Out of the seven Millennium Problems, four come from pure
mathematics, and of these four, one is solved and the remaining three belong to
arithmetic geometry.

The prospect of artificially intelligent programs making new and deep dis-
coveries in this area of mathematics is a tantalizing one. However, most of the
concepts encountered in modern arithmetic geometry are not easily stored or
manipulated by a computer. In the very long term, one may hope that advances
in mathematical linguistics, as developed in Ganesalingam’s thesis [9], may lead
to new computer-generated discoveries and proofs in arithmetic geometry. In
the short term however, it is natural to look for other, less ambitious routes to
making partial progress on selected problems.

In this project paper, we present a framework for encoding data about ob-
jects from arithmetic geometry, with the aim of laying the foundation for future
applications of machine-learning techniques in the field. This is a first brief sur-
vey of a project we have worked on for several years, and many of the details
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will be expanded upon in future publications. Comments, especially suggestions
for the design of computational experiments, are most welcome.

1.1 Arithmetic objects

Somewhat informally, we shall use the term “arithmetic object” to refer to any
kind of object that is of central importance in arithmetic geometry. Some classes
of such objects are: (1) Geometric objects (e.g. a scheme). The reader unfamiliar
with the theory of schemes may think of a scheme simply as a system of polyno-
mial equations. (2) Algebraic objects (a group, a ring, a Hopf algebra, etc.). (3)
Homotopical objects (like an algebraic stack or a ring spectrum). (4) Combina-
torial objects (for example a graph). (5) Analytic objects (e.g. a zeta function).
(6) Objects in a Tannakian category. Examples of the latter include represen-
tations of finite groups, representations of Lie groups, Galois representations,
automorphic representations, motives, Hodge structures, and F-isocrystals.

Technical definitions of all the above terms (schemes, Tannakian categories,
etc) can be found in the online Encyclopedia of Mathematics [7]. Rather than
giving all of these definitions here, we shall present explicit examples from most
of these classes and explain how our proposed encoding framework applies to
each example.

In addition to seeking encodings of single objects, a central goal of our work
is to also encode information about classes of objects (for example the class
of objects in some given Tannakian category), operations on objects (such as
tensor product of group representations, or Tate twist of motives, or Dirichlet
convolution of multiplicative functions), relations between objects (such as a
representation being a direct summand of another), and invariants of objects
(like the Euler characteristic of a scheme).

1.2 What would be required of a good encoding framework?

Let C be some class of arithmetic objects, for examples the class of all elliptic
curves over the rational numbers, or the class of all finite undirected graphs, or
the class of all complex representations of the Monster group.

We seek an encoding framework for objects in C satisfying the following
properties:

1. To every object X in the class C we can assign a finite amount of structured
data E(X). (We think of E(X) as an elementary or electronic ”shadow” of
the object X.)

2. Given a description of X, there should be an explicit algorithm computing
E(X).

3. Many important invariants of X should be computable from E(X) only.

4. Many important operations on objects in C should correspond to explicit
manipulations of the corresponding structured data.
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5. Given two objects X and X ′ from different classes (say one graph and one
elliptic curve), the two associated pieces of data E(X) and E(X ′) should
”be of a similar form” (to facilitate the discovery of connections between
different kinds of structures).

6. Many of the deepest theorems and conjectures about objects X in modern
arithmetic geometry should have a formulation in terms of the associated
data E(X) only.

Any encoding satisfying these requirements will have the property that a com-
puter could in principle discover (or guess) interesting mathematical statements
by searching for patterns in the structured data of many arithmetic objects.

We have found an approach that satisfies all of the above criteria for many
classes of arithmetic objects. The framework is built around the notion of a
Tannakian symbol. In many cases, the information contained in the Tannakian
symbol is the same as the information contained in the “zeta function” of the
arithmetic object, but Tannakian symbols are more flexible than zeta functions,
and there are also cases where it makes sense to speak of Tannakian symbols
even though there are no zeta functions around.

1.3 Previous work

We are not aware of any previous work with the explicit ambition of apply-
ing machine-learning algorithms to geometric, Tannakian and homotopical cat-
egories in higher arithmetic geometry. However, we have drawn inspiration from
many places. Due to algorithmic breakthroughs over the past decade by Ked-
laya [13], Harvey [11], [12], Costa and Tschinkel [5] and others, it is now possible
to compute zeta functions of schemes in much higher dimensions and higher
cohomological complexity than before, and these computations generate huge
amounts of data, that can be interpreted in the language of Tannakian symbols.
A project with the aim of collecting this kind of data has been launched under
the name the L-functions and Modular Forms Database (LMFDB) [14]. From
another direction, we have been inspired by the now classical work of Zeilberger
on holonomic sequences [19], the PhD thesis and articles of Colton [2], [3], [4]
on automated conjecture-making in number theory, and of course the Online
Encyclopedia of Integer Sequences (OEIS) [16].

2 Summary of algebraic theory

The aim of this section is to define what Tannakian symbols are, and to summa-
rize their most important algebraic properties. Proofs of these statements will
be given elsewhere.

2.1 Algebraic structures

We begin by recalling some definitions from abstract algebra. A monoid is a set
equipped with a binary operation that is associative and has an identity element.
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A group is a monoid in which each element has an inverse. A monoid is called
commutative if its binary operation is commutative. An abelian group is the
same thing as a commutative group.

Example 1. The set of positive integers N is a monoid under addition, and it is
also a monoid under multiplication. The set of all complex roots of unity is a
monoid under multiplication.

A commutative ring is a set R with two binary operations, called addition
(+) and multiplication ( · ), with the requirements that R is an abelian group
under addition, a commutative monoid under multiplication, and multiplication
distributes over addition. The identity element for addition is denoted by 0, and
the identity element for multiplication is denoted by 1.

Example 2. The set of integers Z is a commutative ring. The set Z/m, identified
with {0, 1, . . . ,m − 1} is a commutative ring for any integer m ≥ 2, in which
addition and multiplication are carried out modulo m. Whenever R is a com-
mutative ring, the set R[x] of polynomials in x with coefficients in R is also a
commutative ring.

A field is a commutative ring in which the nonzero elements under multipli-
cation form a group (and not just a monoid).

Example 3. The set Q of rational numbers is a field, and so is the set R of real
numbers, and the set C of complex numbers.

A monoid homomorphism from one monoid to another monoid is a function
which commutes with the binary operation and sends the identity element to
the identity element. A ring homomorphism from a ring to another ring is a
function which is a monoid homomorphism both with respect to addition and
with respect to multiplication. An isomorphism (of rings or of monoids) is a
homomorphism which admits a two-sided inverse.

Example 4. Let q be a positive integer. It is known that there exists a field with
exactly q elements if an only if q is a power of a prime number (i.e. q = pe for
some prime p and some positive integer e). Two such finite fields with the same
number of elements are always isomorphic (i.e. there exists an ring isomorphism
between them), and we write Fq for any finite field with exactly q elements.

It is possible to describe all finite fields in a very concrete way. First of all,
when q is a prime number, the ring Z/q is a field with q elements. A more
interesting example is the field with four elements F4, which can be described as
the set {0, 1, α, α+1} where addition is carried out modulo 2, and multiplication
is carried out modulo 2 and modulo the relation α2 = α+ 1. Similar models of
finite fields exist (but are not in general unique) for any prime power q.

A lambda-ring is, informally, a commutative ring R “equipped with all pos-
sible symmetric operations”. The precise definition of “all possible symmetric
operations” is expressed in the notion of a lambda-structure on a commutative
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ring. The general definition of “lambda-structure” is given in terms of an infi-
nite sequence λ0, λ1, λ2, . . . of functions (not ring homomorphisms!) from R
to R, satisfying axioms that are a bit complicated. However, when the ring R
is torsion-free (meaning that finite sums x + x + . . . + x are never zero unless
x itself is zero), there is a simpler equivalent definition which we give here. All
lambda-rings in this paper will be torsion-free, so this definition is enough for
our purposes.

Definition 1. Let R be a torsion-free commutative ring. A lambda-structure
on R is an infinite sequence of ring homomorphisms ψ1, ψ2, . . . from R to R
satisfying the following axioms:

1. ψ1(x) = x for all x ∈ R.
2. ψm(ψn(x)) = ψmn(x) for all m,n and all x ∈ R.
3. ψp(x) ≡ xp (mod pR) for all prime numbers p and all x ∈ R.

The last condition means that the difference ψp(x)−xp can be written as a mul-
tiple of p, in the ring R. The homomorphisms ψm are called Adams operations.

2.2 Tannakian symbols

The kind of “structured data” we shall construct (denoted by E(X) in the in-
troduction) will be called a U -indexed M -valued Tannakian symbol, and we now
turn to the explanation of what this means.

Recall that a multiset is a unordered collection of elements, in which elements
are allowed to be equal. For example, {2, 2, 2, 5} is a multiset with four elements
taken from the set of integers.

Definition 2. Let M be a monoid. An M-valued Tannakian symbol is an or-
dered pair (A,B) of disjoint finite multisets with elements taken from M . We
write TS(M) for the set of all M -valued Tannakian symbols.

Conventions: We shall use the notation A/B or A
B for the ordered pair (A,B),

and will refer to A as the upstairs multiset and to B as the downstairs multiset.
Also, if M happens to be a ring and we write TS(M), we always think of M as
a multiplicative monoid (in other words, we forget the additive structure).

Example 5. The symbol {1, 1, i,−1,−i}/∅ is an example of a C-valued Tan-
nakian symbol. Here i is a complex square root of -1 and ∅ is the empty multiset.

Definition 3. Let U be a set. A U -indexed M -valued Tannakian symbol is a
function from U to TS(M). The set of U -indexed M -valued Tannakian symbols
will be denoted by TSU (M).

Example 6. Let P be the set of prime numbers, and let p denote a variable
element of P. Then {p2, 1}/{p, p} is a P-indexed N-valued Tannakian symbol.
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Consider multisets A = {a1, a2, . . .}, B = {b1, b2, . . .}, C = {c1, c2, . . .} and
D = {d1, d2, . . .} where all the elements are taken from the same monoid M . We
define operations on Tannakian symbols by the following formulas:

Addition:
A

B
⊕ C

D
=
A ] C
B ]D

(Here ] denotes disjoint union of multisets.)

Multiplication:
A

B
⊗ C

D
=
A · C ]B ·D
A ·D ]B · C

(Here A · C denotes the monoid product of A and C, i.e. the multiset of all
possible products a · c with a ∈ A and c ∈ C, listed with repetition.)

Adams operations: ψn
(A
B

)
=
{an | a ∈ A}
{bn | b ∈ B}

(Here, if the element a is repeated several times in A, the element an is also
repeated the same number of times on the right hand side.) In each of these
operations, it is understood that if the operation results in a symbol in which the
upstairs and the downstairs multisets are not disjoint, then we remove pairs of
identical elements until the multisets are disjoint. A few examples will illustrate
what this means.

Example 7. Computations in TS(Z):

{5}
{1,−1}

⊕ {1, 1, 1}
{−1}

=
{5, �1, 1, 1}
{�1,−1,−1}

=
{5, 1, 1}
{−1,−1}

{5}
{1,−1}

⊗ {10}
{3, 7}

=
{50, 3, 7,−3,−7}
{15, 35, 10,−10}

ψ2
({−1,−1, 2, 5}
{1,−2, 7}

)
=
{���(−1)2 , (−1)2,��2

2 , 52}
{��12 ,���(−2)2 , 72}

=
{1, 25}
{49}

The main theorem about Tannakian symbols is the following:

Theorem 1. For any monoid M , the set TS(M) is a lambda-ring under the
operations ⊕, ⊗ and ψn. The same is true for TSU (M) for any set U . Further-
more, TSU (M) is functorial in M as well as in U .

One can go on and give explicit definitions of other structural features and
invariants of Tannakian symbols, such as exterior powers, symmetric powers,
virtual dimension, super-dimension, supertrace and superdeterminant. All this
terminology comes from the setting of lambda-rings obtained by decategorify-
ing Tannakian categories, but is retained also in situations where there is no
Tannakian category involved. The point of all this structure is that whenever
elements of the monoid M can be stored and manipulated by a computer, the
same is true for elements of TSU (M), and the latter capture huge amounts of
structure relevant for higher arithmetic geometry.
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2.3 Assignments and fibers

Now we can be a bit more precise about the picture we would like to paint of
structured data assigned to arithmetic objects. Return to the situation where
C is some class of arithmetic objects. Given such a class, we can in many cases
choose a monoid M and a set U and construct a map

E : C → TSU (M)

which satisfies most of the requirements in the introduction.
In such a setup, we are interested in the following general goals.

1. Understand how much information is lost when we pass from X to E(X). A
way of making this more precise is to define the fiber of a Tannakian symbol
S as the set of all arithmetic objects X in C with E(X) = S. In many cases
one can either prove that each fiber consists of at most one element, or give
a bound on the size of the fiber.

2. Describe the image of E.
3. Set up a correspondence between operations on arithmetic objects in C and

operations on Tannakian symbols.

2.4 An elementary example: Linearly recursive sequences

Let a0, a1, a2, . . . be a linearly recursive sequence in C, with a0 = 1. It is well-
known that it is then possible to rewrite the power series a0+a1t+a2t

2+ . . . as a
rational expression of the form

∏n
j=1(1− βjt)/

∏m
i=1(1−αit), and we define the

Tannakian symbol attached to the linearly recursive sequence to be A/B, with
the multisets A = {αi} and B = {βj}. With this definition, taking the product
of power series corresponds to adding Tannakian symbols.

3 Schemes

3.1 General theory

For the purposes of this article, we define an affine scheme to be a finite set of
variables x1, x2, . . . , xd together with a finite list of polynomial equations (with
integer coefficients) in these variables. Given an affine scheme X and a field K,
we write X(K) for the set of solutions to the equations of X with values in the
field K; elements of this set are called K-valued points of X.

We also define a projective scheme to be a finite set of variables x0, x1, . . . , xd
together with a finite list of homogeneous polynomial equations (with integer
coefficients) in these variables. The equations are not required to be of the same
degree. In this setting, we let X(K) denote the set of equivalence classes of
solutions with values in K, where two solutions are called equivalent if one is a
scalar multiple of the other. For projective schemes, we never count the trivial
solution in which all variables take the value zero.



8 Andreas Holmstrom

As a special case we may take K to be the finite field Fq, and the set X(Fq)
is then automatically a finite set. We write #X(Fq) for the cardinality of this
set.

There is a general construction which associates a projective scheme to any
affine scheme. If the affine scheme X is defined by equations

fi(x1, x2, . . . , xd) = 0 i = 1, 2, . . .m

then the associated projective scheme is defined by corresponding equations

Fi(x0, x1, x2, . . . , xd) = 0 i = 1, 2, . . .m

where Fi is obtained from fi by multiplying each term by a suitable power of x0
so that Fi becomes homogenous of degree deg(fi).

Example 8. The equation x2+1 = 0 defines an affine scheme X (in one variable).
It is easy to see that in this case, we have X(Q) = X(R) = ∅ (the empty set),
but X(C) = {i,−i}. Using modular arithmetic, we compute X(F2) = X(F3) = ∅
and X(F5) = {2, 3}. In general, for an odd prime p, the cardinality of X(Fp) is 2
or 0 depending on whether p is congruent to 1 or 3 modulo 4. This pattern is a
special case of Gauss’ famous quadratic reciprocity law, and quadratic reciprocity
is an example of a pattern that can be expressed purely in terms of Tannakian
symbols.

Theorem 2 (Dwork). Let X be a scheme (affine or projective) and let p be a
prime. There exists unique multisets A = {α1, α2, . . . , αm} and B = {β1, . . . , βn}
of complex numbers such that for all k ≥ 1, we have

#X(Fpk) = βk1 + βk2 + . . .+ βkn − αk1 − αk2 − . . .− αkm
Definition 4. Let X be a scheme and let p be a prime. We define the Tannakian
symbol of X at p to be A/B, where A and B are the multisets in Dwork’s theorem.

For simple equations and small primes, the multisets appearing in Dwork’s theo-
rem can be computed by hand. Finding efficient algorithms for computing com-
plicated examples is an active area of research in computational number theory.

Example 9. Since Wiles proved Fermat’s Last Theorem using the Modularity
theorem for elliptic curves, the class of elliptic curves has probably become the
most famous class of schemes. As a simple example of an elliptic curve, take the
scheme X defined by the equation y2 + y = x3 − x2. At the prime p = 2, the
symbol becomes:

Affine case:
{−1 + i,−1− i}

{2}
Projective case:

{−1 + i,−1− i}
{1, 2}

The projective case is often the most interesting. In this example, deleting all
numbers in the symbol except those with absolute value

√
2 corresponds to

cutting out the “motive” h1(X) from X. One can also associate Tannakian
symbols to modular forms, and the Modularity theorem can be formulated as
saying that for every elliptic curve X, there exists a modular form which at all
primes has the same Tannakian symbol as the motive h1(X).
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Combining Tannakian symbols from all primes gives rise to a map from the class
of elliptic curves to TSP(C). The fibers of this assignment are called isogeny
classes of elliptic curves; it is known that these fibers are finite. Furthermore,
elliptic curves come with a natural complexity measure N called the conductor
(the above example has conductor 11), and by restricting attention to elliptic
curves of, say, conductor less than 100000, we may restrict the set of indexing
primes to a finite set without losing any information.

In general, the symbol attached to a projective scheme without singularities
yields easy recipes for computing the Betti numbers and Euler characteristic of
a scheme. In the above example the Betti numbers are 1, 2 and 1; these numbers
are obtained by counting symbol elements with absolute value 1,

√
2, and 2,

respectively. The Euler characteristic is computed by subtracting the number of
elements upstairs from the number of elements downstairs; for this elliptic curve
we get 2 − 2 = 0. Plotting the numbers appearing in the symbol as points in
the complex plane reveals symmetries related to Poincaré duality and patterns
related to the Riemann hypothesis over finite fields (proved by Deligne, Fields
medal 1978). All of this was originally formulated as the famous Weil conjectures
in the 1950s.

After computing the Tannakian symbols for several primes (up to size
√
N ap-

proximately) one can easily compute what’s called values of L-functions - these
are the values appearing in the two Millennium Problems called the (global)
Riemann hypothesis and the Birch and Swinnerton-Dyer conjecture. These Tan-
nakian symbols also allows for explicit formulations of many other deep questions
of current interest to arithmetic geometers, such as the Sato-Tate conjecture,
and various conjectures on Galois representations. The operations on Tannakian
symbols correspond to operations in the so-called Grothendieck ring of motives,
which is of interest not only in arithmetic geometry, but also in physics, where
they are directly related to Feynman integral calculations in perturbative quan-
tum field theory [15].

3.2 Case study: Arithmetic mirror symmetry

Let Xκ be the ”quartic Dwork family”, i.e. the projective scheme defined by the
equation

x4 + y4 + z4 + w4 = 4κxyzw

where κ is a integer-valued parameter (so that by varying κ we get a family of
schemes). The scheme Xκ comes with a natural action of the group Z/4× Z/4.
Taking the quotient scheme by this group action and resolving singularities yields
a new scheme Yκ, called the mirror of Xκ.

For concreteness, let’s look at the prime p = 41. For κ = 2, we get1 the
following symbols:

E(X2) = {1, 41, 41, 41, 41,−41,−41, . . . ,−41,
25− 8

√
66i

2
,

25 + 8
√

66i

2
, 1681}/∅

1 The examples here are adapted from the presentation of Ursula Whitcher [18], and
were computed using computer code by Edgar Costa [5].
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Here there are 4 copies of the number 41 and 16 copies of the number -41. For the
mirror variety, which a priori might be expected to have a completely different
symbol, we get

E(Y2) = {1, 41, 41, . . . , 41,−41,
25− 8

√
66i

2
,

25 + 8
√

66i

2
, 1681}/∅

with 19 copies of the number 41, a single copy of the number -41, and an other-
wise identical symbol!

Still working with p = 41, for the case κ = 3 we get:

E(X3) = {1, 41, 41, . . . , 41,−39 + 4
√

10i,−39− 4
√

10i, 1681}/∅

with 20 copies of the number 41. And this time, the Tannakian symbol for the
mirror variety Y3 is

E(Y3) = {1, 41, 41, . . . , 41,−39 + 4
√

10i,−39− 4
√

10i, 1681}/∅

with 20 copies of 41, which means. . . that the symbols are absolutely identical!!
Patterns of this kind is the subject of arithmetic mirror symmetry, a relatively

recent field inspired by the physics of string theory. It is conceivable that a
computer searching for patterns in Tannakian symbols could have identified the
schemes Xκ and Yκ as ”similar”, even if no human had ever thought of mirror
symmetry.

4 More examples

4.1 Multiplicative functions

Much of elementary number theory (questions about primes, divisibility, etc.),
can be formulated in terms of multiplicative functions from N to C. In this con-
text a function f is multiplicative if f(1) = 1 and f(mn) = f(m)f(n) whenever
m and n are coprime.

Let p be a prime. For all multiplicative functions appearing naturally in
number theory, it turns out that the sequence of function values

f(1), f(p), f(p2), f(p3), . . .

is linearly recursive, and hence we can associate a Tannakian symbol to the
pair (f, p). Letting p vary over the set P of all prime numbers, we get a P-
indexed C-valued Tannakian symbol attached to the multiplicative function f .
For example, the Euler totient function has symbol {p}/{1}, the characteristic
function of the square numbers has symbol {1,−1}/∅, and the sum-of-divisors
function has symbol {1, p}/∅.

This assignment is injective on multiplicative functions, and for many clas-
sical classes of functions it stays injective even when U is reduced to a finite set
of primes. Furthermore, Dirichlet convolution of functions correspond to addi-
tion of symbols, product of function corresponds to product of symbols (under a
certain hypothesis), and norm operators on multiplicative functions correspond
to certain Adams operations.
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4.2 Graphs

There are at least three interesting ways of associating a Tannakian symbol to a
(finite) graph. Firstly, given a graph X, we could define the Tannakian symbol of
X to be A/∅, where A is the spectrum of X, i.e. the multiset of eigenvalues of the
adjacency matrix of X. With this definition, taking the disjoint union of graphs
would correspond to addition of Tannakian symbols, and taking tensor product
of graphs would correspond to multiplication of Tannakian symbols. Graphs with
the same spectrum are called isospectral, so the fibers of this assignment would
be classes of isospectral graphs.

Example 10. With this definition, the Tannakian symbol of the complete graph
on 4 vertices would be {−1,−1,−1, 3}/∅

It is conjectured that almost all graphs are determined by their spectra. How-
ever, there are many cases of non-isomorphic graphs with identical spectrum.
For example, the number of simple graphs on 9 vertices is 274668 (see OEIS:
Sequence A000088), while the number of such graphs isospectral to at least one
other graph is 51039 (OEIS: Sequence A099883).

A second approach would be to define the Tannakian symbol of a graph X to
be A/∅, where A = {α1, α2, . . . , αm} is the finite multiset of complex numbers
appearing in the expression

ζX(T ) =
1

(1− α1T )(1− α2T ) · · · (1− αmT )

where ζX(T ) is the Ihara zeta function of the graph X.

Example 11. With this alternative definition, the Tannakian symbol of the com-
plete graph on 4 vertices would be

{−1,−1, 1, 1, 1, 2, −1+
√
7i

2 , −1+
√
7i

2 , −1+
√
7i

2 , −1−
√
7i

2 , −1−
√
7i

2 , −1−
√
7i

2 }/∅

In a recent paper [6], Durfee and Martin conjecture that almost all graphs which
are not determined by their spectrum are determined by their zeta function.

As a third possibility, one can associate a certain polynomial (the “graph
polynomial”) to any graph X. This polynomial defines a scheme, called the graph
hypersurface of X, and we could associate Tannakian symbols to the graph X by
counting points of its graph hypersurface, like we did in the previous section for
an elliptic curve and the quartic Dwork family. We refer to Brown and Schnetz [1]
for background, definitions, and extensive calculations motivated by applications
to quantum field theory. One of their conclusions can be reformulated by saying
that for many graphs, the Tannakian symbols constructed by this method seem
to also come from modular forms.

4.3 Representations of finite groups

Let G be a finite group. Associated to G is its representation ring R(G), a
lambda-ring generated by irreducible complex representations under the oper-
ations of direct sum, tensor product, and exterior powers. Any element g ∈ G



12 Andreas Holmstrom

gives rise to a lambda-ring homomorphism from R(G) to TS(M), where M is
the monoid of complex roots of unity. Combining several such maps, one obtains
a lambda-ring homomorphism E from R(G) into TSU (M), where U is a subset
of G. The most interesting choice of U , which we will use in the remainder of
this section, is to pick one representative of each conjugacy class of G; this choice
guarantees the injectivity of E.

Many interesting patterns and unsolved problems about representations can
be reformulated in terms of the map E : R(G) → TSU (M). This is due to the
fact that both the character table of G and the lambda-ring structure of R(G)
can be recovered from the values of E.

Example 12. Taking G to be the Monster group, the character table is a 194
by 194 matrix, whose rank is 163. The number 163 also appears in the study
of imaginary quadratic number fields; it is in fact the largest possible integer D
such that the number field Q(

√
−D) has class number 1 (meaning that its ring

of integers is a unique factorization domain). The study of such number fields
goes back to Gauss and is the simplest instance of Gauss’ famous class number
problem. As explained for example in the popular book of Mark Ronan [17], the
appearance of the number 163 in both places might well be a coincidence, but
it could also be a hint that there is some mysterious connection between the
Monster group and algebraic number theory that is yet to be understood.

An even more spectacular pattern connected with the Monster group is
the Monstrous Moonshine Conjecture, formulated by Conway and Norton and
proved by Richard Borcherds (Fields medal 1998). The starting point of this
wonderful story was the observation that a certain number obtained from the
character table (the dimension of the smallest nontrivial irreducible represen-
tation) is (almost) equal to the coefficient of the linear term in the Fourier
expansion of Klein’s j-function.

Let’s now turn to a much simpler group, for which everything can be worked
out by hand.

Example 13. One of the simplest non-trivial examples of a finite group is the
symmetric group S3 of permutations on three objects. This group has 6 elements
in total, partitioned into 3 conjugacy classes. Let e be the identity element, let
t be any transposition (an element of order 2), and let r be one of the two
“rotations” (an element of order 3). These three elements represent the three
conjugacy classes of S3. The number of irreducible representations of a finite
group is the same as the number of conjugacy classes, and in our example, the
irreducible representations are:

C+: The trivial representation, sending every permutation to 1.

C−: The sign representation, sending a permutation to its sign.

C2: A two-dimensional representation, visualized as a matrix action of S3 on a
triangle with vertices at the three cube roots of unity in the complex plane.
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In this simple case, it is easy to compute the function E by hand. We get,
for the three different choices of group element g:

Case g = e : E(C+) = {1}/∅ E(C−) = {1}/∅ E(C2) = {1, 1}/∅
Case g = t : E(C+) = {1}/∅ E(C−) = {−1}/∅ E(C2) = {1,−1}/∅
Case g = r : E(C+) = {1}/∅ E(C−) = {1}/∅ E(C2) = {ω, ω2}/∅

Here ω is a primitive 3rd root of unity. Any element of R(G) can be written as a
formal difference V −W , where V and W are representations built as direct sums
of irreducible ones, and we may compute in R(G) by identifying such a formal
difference with an ordered triple of symbols (using the injective map E and
applying the rules for computing with Tannakian symbols). For example, we get
(suppressing E from the notation): C2 =

(
{1, 1}/∅ , {1,−1}/∅ , {ω, ω2}/∅

)
and C+ ⊕ C− − C2 =

(
∅/∅ , ∅/∅ , {1, 1}/{ω, ω2}

)
. A similar computation

shows that C2⊗C2 equals C+⊕C−⊕C2, and in general any tensor product
of representations can be expressed as a direct sum of irreducibles, using only
Tannakian symbols.

4.4 Algebraic stacks

The arithmetic objects discussed so far in this paper were key players in many of
the greatest arithmetic discoveries of the 20th century. However, in 21st century
research, new classes of objects are becoming increasingly important, and these
objects come from homotopy theory and higher category theory. The most beau-
tiful application so far is probably the recent proof of the Tamagawa number
conjecture by Gaitsgory and Lurie [8], in which homotopical objects called stacks
play a prominent role. Stacks are a generalization of schemes, for which X(Fq)
is no longer a set, but a groupoid or a simplicial set. There are several different
ways of assigning Tannakian symbols to (certain classes of) stacks. The method
used for schemes will work provided we accept infinite multisets. For example,
the stack BGm (the classifying stack of the multiplicative group) would then at
the prime p have the Tannakian symbol {p−1, p−2, p−3, . . .}/∅.

5 Final remarks on arithmetic pattern-detection

What constitutes an important discovery or a deep conjecture in arithmetic
geometry? Looking at many examples in the literature, a few of which we have
seen in the examples, it is reasonable to say that deep arithmetic statements are
often observations of patterns expressed in terms of Tannakian symbols.

But is it conceivable that machine-learning algorithms really could have de-
tected some of these patterns? And is it reasonable to expect machines to discover
new patterns, maybe even of comparable interest to the Weil conjectures, Mon-
strous Moonshine, or arithmetic mirror symmetry? Although we do not claim
to know the answer to these questions, we would like to end by suggesting two
necessary features that such algorithms would have to incorporate in order to
have any chance of making such discoveries.
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5.1 Exotic metrics

In traditional data analysis, data points are given by vectors of real numbers
(or rather floating point approximations), visualized as points in n-dimensional
Euclidean space Rn. Two data points are then considered to have similar features
if they are close with respect to some metric on Rn derived from the standard
metric (x, y) 7→ |x− y| on the set of real numbers.

Similarly, in a traditional neural network based on perceptrons or sigmoid
neurons, the output of an individual neuron is a function of the size of an in-
coming real number, and “size” here refers to a measurement made using the
standard metric on the real numbers.

In arithmetic geometry, many patterns and relations can be expressed in
terms of a metric, but it is not enough to work with the standard metric on
real numbers. Instead, the standard metric needs to be complemented by others,
most importantly the p-adic metrics. For any prime number p, the p-adic metric
on the set of rational numbers is defined as follows. For two distinct rational
numbers x and y, there is a unique integer k such that x− y can be written on
the form ±pk · a/b, where a and b are positive integers coprime to p. The p-adic
distance |x − y|p between x and y is defined to be p−k. This definition can be
extended to irrational algebraic numbers, but unlike the standard metric, it is
not defined for transcendental numbers.

Unravelling the definition, it is easy to see that as a special case, two integers
x and y are congruent modulo p if and only if they are close in the sense that their
p-adic distance is less than or equal to 1/2. Combining different primes and using
the Chinese remainder theorem, any arithmetic pattern involving congruences
can be expressed (and hence potentially discovered) using p-adic metrics2.

5.2 Symmetry detection

Another class of arithmetic patterns can be collected under the umbrella of sym-
metry. While the lambda-ring structure on Tannakian symbols in itself captures
certain kinds of symmetry, there are also many other kinds, including Poincaré
duality (seen in the symbol of a projective scheme without singularities), various
symmetries in Hodge diamonds, symmetries of modular forms, and the fact that
the number of rows in a character table equals the number of columns.

A mathematical treatment of symmetry invariably involves group theory,
and in situations where the symmetry group is both finite and known, it is easy
to implement algorithms for detecting symmetry. However, in cases where the
symmetry group is infinite and/or unknown, the symmetry detection problem
is more challenging. It would be interesting to explore the image recognition
and computer vision literature on symmetry detection and think about whether
known algorithms can be applied to arithmetic settings, for example to plots of
complex numbers taken from a Tannakian symbol.

2 It might also be interesting to build algorithms based on other kinds of metrics,
like the I-adic metric on a polynomial ring (where I is an ideal of the ring), or the
Granville-Soundararajan metric on multiplicative functions [10].
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